Answer:
1.pulley,screw,inclined plane
2.using simple machine properly with right way and precautions
Explanation:
3.cuz if they are not used properly they can cause injuries to organs
Answer:
Stereotypes are widely held beliefs that people have certain traits because they belong to a particular group stereotypes are often in accurate and frequently portray the members of less powerful less controlling groups or negatively and members of more powerful more controlling groups.
Answer:
(a) 7.315 x 10^(-14) N
(b) - 7.315 x 10^(-14) N
Explanation:
As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force, a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,
(a) The electron has a velocity defined as: ![\overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%282.4x10%5E%7B6%7D%20i%20%2B%203.6x10%5E%7B6%7D%20j%29%20%5Cfrac%7B%5Bm%5D%7D%7B%5Bs%5D%7D%5C%5C%5C%5C)
In respect to the magnetic field; ![\overrightarrow{B}=(0.027 i - 0.15 j) [T]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BB%7D%3D%280.027%20i%20-%200.15%20j%29%20%5BT%5D)
The magnetic force can be written as;
![\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%20%3D%20q%28%5Coverrightarrow%7Bv%7D%20x%20%5Coverrightarrow%7BB%7D%29%5C%5C%20%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D)
Bear in mind
thus,
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20-1.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%287.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%287.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%201.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%28-7.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%28-7.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D-7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.
Answer:

Explanation:
The resistance of a conductor is directly proportional to its length and is inversely proportional to its cross-sectional area, this dependence is given by:

is the material's resistance, L is the legth and A is the cross-sectional area.
For the first and second coils, we have:

For the third and fourth coils, we have:
