Answer:
the light emitting must be of greater wavelength
Explanation:
For this exercise we must use the Planck equation
E = h f
And the speed of light
c = λ f
f = c / λ
We replace
E = h c / λ
The wavelength of the green light is of the order of 500 nm, let's calculate the energy
E = 6.63 10⁻³⁴ 3 10⁸ /λ
E = 1,989 10⁻²⁵ /λ
λ = 500 nm = 500 10⁻⁹ m
E = 1,989 10⁻²⁵ / 500 10⁻⁹
E = 3,978 10⁻¹⁹ J
That is the energy of the transition for a transition is an intermediate state the energy must be less, this implies that the wavelength must increase. For the explicit case of a state with half of this energy
= E / 2
= 3,978 10⁻¹⁹ / 2 = 1,989 10⁻¹⁹
Let's clear and calculate
λ = h c / E
λ = 1,989 10⁻²⁵ / 1,989 10⁻¹⁹
λ = 1 10⁻⁶ m
Let's reduce to nm
λ = 1000 nm
This wavelength is in the infrared region
the light emitting must be of greater wavelength
Answer:
A metalloid is used because it is a semiconductor and can become more conductive when more light shines on it
Explanation:
The material used in a solar panel is a metalloid. It can often become conductive when more light shines on it.
Metalloids have properties that straddles between those of metals and non-metals.
In essence, they can be conductive or not under certain conditions.
The most important property they exhibit is that they can become more conductive when more light shines on them. This way more electrons are produced.
So we want to know how can we detect infrared rays without an instrument. Infrared rays or heat, are a part of electromagnetic spectrum. We have specialized nerve cells in our skin called thermoreceptors that can detect differences in temperature that are produced by infrared part of EM spectrum.
The question is incomplete.
The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.
Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.
Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.