Answer:
2HClO4(aq) + Ca(OH)2(aq) → Ca(ClO4)2(aq) + 2H2O(l)
Perchloric acid + Calcium hydroxide → Calcium perchlorate + Water.
Explanation:
This is a neutralization reaction where the acid, Perchloric acid reacts completely with an appropriate amount of base, aqueous Calcium hydroxide to produce salt, aqueous Calcium perchlorate and water, liquid H2O only.
During this reaction, the hydrogen ion, H+, from the HClO4 is neutralized by the hydroxide ion, OH-, from the Ca(OH)2 to form the water molecule, H2O.
Thus, it is called a neutralization reaction.
Answer:
See explanation
Explanation:
1 mole of a gas occupies 22.4 L
x moles occupies 16.8 L
x = 1 mole * 16.8 L/22.4 L
x = 0.75 moles
number of moles = mass/molar mass
mass = number of moles * molar mass
mass = 0.75 moles * 30.01 g/mol = 22.5075 g = 2.25 * 10^1 g
the coefficient of the scientific notation answer = 2.25
the exponent of the scientific notation answer = 1
significant figures are there in the answer = 6
the right most significant figure in the answer = 3
2.
number of moles = 12.5g/38g/mol = 0.3289 moles
1 mole occupies 22.4 L
0.3289 moles occupies 0.3289 moles * 22.4 L/1 mole
= 7.36736 L = 7.36736 * 10^0 L= 7.37 * 10^0 L
the coefficient of the scientific notation answer =7.37
the exponent of the scientific notation answer = 0
significant figures are there in the answer = 6
the right most significant figure in the answer= 3
Explanation:
B. Recycles slowly
And it also depends on the organism
Answer:
The correct statements are:
The rate of disappearance of B is twice the rate of appearance of C.
Explanation:
Rate of the reaction is a change in the concentration of any one of the reactant or product per unit time.
3A + 2B → C + 2D
Rate of the reaction:
![R=-\frac{1}{3}\times \frac{d[A]}{dt}=-\frac{1}{2}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![-\frac{1}{3}\times \frac{d[A]}{dt}=\frac{1}{1}\times \frac{d[C]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![-\frac{1}{3}\times \frac{d[A]}{dt}=\frac{1}{2}\times \frac{d[D]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
The rate of disappearance of B is twice the rate of appearance of C.
![\frac{1}{1}\times \frac{d[C]}{dt}=-\frac{1}{2}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![2\times \frac{1}{1}\times \frac{d[C]}{dt}=-\frac{1}{1}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=2%5Ctimes%20%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
pH is an important parameter for many reactions to take place in solution and in biological systems. It is related to the concentration of H⁺ ions through the following expression:
pH = 1/[H⁺] = -log [H⁺]
Wanting to know the pH of a solution is equivalent to knowing the amount of hydrogen ions present. But the pH scale is more convenient than the concentration scale because pH usually takes values between 0 and 14.
- When pH < 7 the solution is acid.
- When pH = 7 the solution is neutral (like pure water).
- When pH > 7 the solution is basic.