Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:

Gravity holds the system together
Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>
Answer: 0.2 hours
Explanation: In order to solve this question we have to considerer that a recargeable battery can supply 1800 mA in one hour then we have to determine how long could this battery drive current through a long, thin wire of resistance 34 Ω .
Besides, this battery has a voltage of 12 V
so by using the Ohm law we also know that V=R*I,
Fron this we can obtain:
I= V/R= 12 V/ 34 Ω=0.35 A= 350 mA
then considering that this battery can supply 1800 mA in one hour we have this battery can supply 350 mA in x time in the form:
1hour------- 1800 mA
x hour--------350 mA
time= 350/1800= 0.2 hour
Answer:
11.0 kg m/s
Explanation:
The impulse exerted on the cart is equal to its change in momentum:

where
m = 5.0 kg is the mass of the cart
is its change in speed
Substituting numbers into the equation, we find
