Answer:
tension in rope = 25.0 N
Explanation:
- Two forces act on the suspended weight. The force coming down is the gravitational force and the upward force by the tension in the rope.
- Since the suspended weight is not accelerating so that the net force will be zero. Therefore the tension in the rope should be 25 N.
∑F = F - W = 0
so
F = W
so tension in rope = F = T = 25 N
The number of grams of carbon that combine with 16 g of oxygen in the formation of CO₂ is 6g.
When two elements combine to make more than one compound, the masses of one element combined with a fixed amount of another element are in the ratio of whole numbers, according to the law of multiple proportions.
When combined with oxygen, carbon can produce two different compounds. They are referred to as carbon dioxide (CO₂) and carbon monoxide (CO).
Carbon monoxide is formed by combining 12 g of carbon with 16 g of oxygen whereas Carbon dioxide is formed when 12 g of carbon reacts with 32 g of oxygen. The amount of carbon is fixed at 12 g in each case. The mass ratio of carbon monoxide to carbon dioxide is 16: 32, or 1: 2.
But in the given case, 16g of oxygen is reacting instead of 32g. Therefore, the number of grams of carbon reacting will be:

Thus, 6g of carbon will react with 16g of oxygen to form carbon dioxide.
Read more about Law of Multiple Proportions:
brainly.com/question/13058110
#SPJ4
Answer:
(a) The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b) it’s possible for a diver to enter the water with the velocity of 25 m/s if he has initial velocity of 14.4 m/s. The upward initial velocity can’t be physically attained
Explanation:
(a)
To find the final velocity
for an object traveling distance h taking the initial vertical component of velocity as
the kinematics equation is written as
where a is acceleration
Substituting g for a where g is gravitational force value taken as 9.81

Since the initial velocity is zero, we can solve for final velocity by substituting figures, note that 70 ft is 21.3 m for h
= 20.44275
Therefore, the divers enter with a speed of 20.4 m/s
The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b)
The divers can enter water with a velocity of 25 m/s only if they have some initial velocity. Using the kinematic equation

Since we have final velocity of 25 m/s


= 14.390761 m/s
Therefore, it’s possible for a diver to enter the water with the velocity of 25 m/5 if he has initial velocity of 14.4 m/s
In conclusion, the upward initial velocity can’t be physically attained
Answer:
3.14946 rad/s
Explanation:
= Intial moment of inertia
= Final moment of inertia
= Initial angular velocity
= Final angular velocity = 

In this system the angular momentum is conserved

The angular velocity when the diver left the board is 3.14946 rad/s
1. your ear drums feel like they pop when you go deep enough under water. kinda feels like bricks. and it hurts if you stay under to long.
2. this could be a reaction from fluid pressure yes. can could be avoided by getting wax ear plugs however even with ear plugs going deep enough under water can still make your ears "pop" due to pressure but at high surfaces it would avoid that.
Please rate me brainliest?