Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.
Answer : The average speed of the sprinter is, 34.95 Km/hr
Solution :
Average velocity : It is defined as the distance traveled by the time taken.
Formula used for average velocity :

where,
= average velocity
d = distance traveled = 200 m
t = time taken = 20.6 s
Now put all the given values in the above formula, we get the average velocity of the sprinter.

conversion :
(1 Km = 1000m)
(1 hr = 3600 s)
Therefore, the average speed of the sprinter is, 34.95 Km/hr
Answer:
The moon is 1,079.4 mi.
Mars is 2,106.1 mi
Multiply your weight by the moon's gravity relative to earth's, which is 0.165. Solve the equation. In the example, you would obtain the product 22.28 lbs. So a person weighing 135 pounds on Earth would weigh just over 22 pounds on the moon
Being that Mars has a gravitational force of 3.711m/s2, we multiply the object's mass by this quanitity to calculate an object's weight on mars. So an object or person on Mars would weigh 37.83% its weight on earth.
Explanation:
~Hope this helps
Seismic wave is the answer
Answer:
The velocity of the arrow after 3 seconds is 30.02 m/s.
Explanation:
It is given that,
An arrow is shot upward on the moon with velocity of 35 m/s, its height after t seconds is given by the equation:

We know that the rate of change of displacement is equal to the velocity of an object.

Velocity of the arrow after 3 seconds will be :

So, the velocity of the arrow after 3 seconds is 30.02 m/s. Hence, this is the required solution.