Answer:
The time it takes for 14C to radioactively decay is described by its half-life. C has a half-life of 5,730 years. In other words, after 5,730 years, only half of the original amount of 14C remains in a sample of organic material. After an additional 5,730 years–or 11,460 years total–only a quarter of the 14C remains.
Explanation:
Hope this helps
Answer:
d = 1.954 Km
Explanation:
given,
total distance, D = 2.5 Km
in stretch A to B =
speed = 99 Km/h = 99 x 0.278 = 27.22 m/s time =t
in stretch B to C
time = 3.4 s
In stretch C to D
speed = 48 Km/h = 48 x 0.278 = 13.34 m/s time =t
we know,
distance = speed x time
distance of BC
using equation of motion
v = u + a t
27.22 = 13.34 - a x 3.4
a = 4.08 m/s²
uniform deceleration is equal to 4.08 m/s²
distance traveled in BC


s = 68.94 m

3000 = 27.5 t + 68.94 + 13.33 t
40.83 t = 2931.06
t = 71.79 s
distance travel in AB
distance = s x t
d = 27.22 x 71.79
d = 1954 m
d = 1.954 Km
distance between A and B is equal to 1.954 Km.
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.