Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


Answer:
because of the idea that like charges get repulsion as a force.
Explanation:
because you wrap the ball with foil, the negative charges will leave the foil and go into the ball by induction. This leaves the foil as a positively charged particle since its electrons left it for the ball, making the ball a negatively charged particle. but if you bring the negative charge near the foil, the electrons will transfer from that and go into the foil, making it negatively charged. Now, because the ball and the foil have the same charge, they repel. the foil flies off.
Answer:
The work done on the Frisbee is 1.36 J.
Explanation:
Given that,
Mass of Frisbee, m = 115 g = 0.115 kg
Initial speed of Frisbee, u = 12 m/s at a point 1 m above the ground
Final speed of Frisbee , v = 10.9674 m/s when it has reached a height of 2.00 m. Let W is the work done on the Frisbee by its weight. According to work energy theorem, the work done is equal to the change in its kinetic energy. So,

So, the work done on the Frisbee is 1.36 J. Hence, this is the required solution.
That's called the wave's "wavelength" .
V = IR
I = V/R
I = 12/6
I = 2 amps