Answer:
x=2.8moles
Explanation:
first step balance the chemical equation
C2H6+O2-->CO2+2H2O
use more ratio to find the moles of water
1mole of C2H6= 2 moles of H2O
1.4mole of C2H6=?x
cross multiply
x=2.8 moles of H2O
Answer:
1.14atm
Explanation:
Given parameters:
V1 = 250cm³ ;
1000cm³ = 1dm³; so this is 0.25dm³
P1 = 760torr
760torr = 1atm
V2 = 220cm³ ; 0.22dm³
Unknown:
New pressure = ?
Solution:
To solve this problem, we apply Boyle's law and we use the expression below:
P1 V1 = P2V2
The unknown is P2;
1 x 0.25 = P2 x 0.22
P2 = 1.14atm
<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>
Answer:
0.47dm³
Explanation
Given parameters :
Molarity of NaCl = 6.67M
Number of moles = 3.12mol
Volume of NaCl =?
Volume of NaCl = number of moles/Molarity
Volume of NaCl = 3.12mol/6.67M
Volume of NaCl = 0.47dm³
I think the correct answer would be the third option. The correct name for the hydrocarbon described above would be 2-heptyne. It has a chemical formula written as CH3 - CH2 - CH2 - CH2 - C ≡ C - CH3. Counting the number of carbons, we have 7 carbon atoms so we use the prefix hepta-. Since it has a triple bond then it is an alkyne. So, it would be named as heptyne. The triple bond is located on the second carbon atom so we write 2 before the name to indicate the location of the triple bond. The name of the compound would be 2-heptyne.