Answer:
The factors on which the amount of energy absorbed by an endothermic reaction depends are the " physical state of the reactant and the difference in the potential energy of the reactant and the product".
Explanation:
In an endothermic reaction the factors that affects the reaction are the physical state of the reactant, which thus becomes the enthalpy. And the difference in potential energy of the reactant because if the sum of the potential energy is less than the sum of the potential energy of the product than the endothermic reaction will be positive and the reaction hence will be endothermic.
= -
Answer:
- <u><em>294.307 g/mol</em></u>
Explanation:
The first question for this statment is:
- <em>Calculate the gram-formula-mass of aspartame. </em>
<em />
<h2>Solution</h2>
The chemical formula is:
The <em>gram-formula-mass </em>is calculated adding the masses for all the atoms in the molecular formula:
Atom Number of atoms Atomic mass Total mass
g/mol g/mol
C 14 12.011 14 × 12.011 = 164.154
H 18 1.008 18 × 1.008 = 18.144
N 2 14.007 2 × 14.007 = 28.014
O 5 15.999 5 × 15.999 = 79.995
===================
Total 294.307 g/mol
Answer: 294.307 g/mol
The answer is B as isotopes are different versions of the same chemical element containing the same amount of protons and electrons but different amounts of neutrons.
Energy(heat) required to raise the temperature of water : 418.6 J
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Specific heat of water = 4.186 J/g*C.
∆T(raise the temperature) : 10° C
mass = 10 g
Heat required :
Answer:
So she can have something to reach or look forward to.
Explanation:
none