Answer:
1.65 h
121.39 km
Explanation:
Given that
speed of the driver, v = 99.5 km/h
time spent resting, t = 26 min
Average speed of the driver = 73.6 km/h
check attachment for calculation and how I arrived at the answer
Answer:
Lifting force, F = 21240 N
Explanation:
It is given that,
Mass of the helicopter, m = 1800 kg
It rises with an upward acceleration of 2 m/s². We need to find the lifting force supplied by its rotating blades. It is given by :
F = mg + ma
Where
mg is its weight
and "ma" is an additional acceleration when it is moving upwards.
So, 
F = 21240 N
So, the lifting force supplied by its rotating blades is 21240 N. Hence, this is the required solution.
Accuracy is a general concept while precision is more of a mathematical concept.
The Kinetic<span> Molecular </span>Theory<span> explains the forces between </span>molecules<span> and the energy that </span>they<span> possess.
</span>
Answer:
The frequency of the phonograph record is 0.2 Hz
Explanation:
The frequency of an object moving in uniform circular motion is the number of completed cycles the object makes in a specified time period
The given parameters of the phonograph record are;
The radius of the record = 0.15 m
The number of times the phonograph record rotates, n = 18 times
The time it takes the phonograph record to rotate the 18 times, t = 90 seconds
The frequency of the phonograph record, f = (The number of times the phonograph record rotates) ÷ (The time it takes the phonograph record to rotate the 18 times)
∴ The frequency of the phonograph record, f = n/t = 18/(90 s) = 0.2 Hz
The frequency of the phonograph record = 0.2 Hz.