Answer:
[Ne] 3s² 3p²
Explanation:
Silicon atoms have 14 electrons. The ground state electron configuration of ground state gaseous neutral silicon is 1s²2s²2p⁶3s²3p².
Using noble gas shorthand, the electronic configuration is reduced to;
[Ne] 3s² 3p². Ne s the nearest noble gas to silicon, Ne contains 8 electrons, this means there's still 4 more electrons to fill. The s orrbital can only hold 2, hence the reaing two is transferred to the p orbital.
Answer:
density equals weigt divided by volume
Explanation:

Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Answer:
1) The power needed to process 50 ton/hr is 135.4 HP.
2) The void fraction of the bed is 0.37.
Explanation:
1) For this type of milling operations, we can estimate the power needed for an operation according to the work index (Ei), the passing size of the circuit feed (F80) and the passing size of the product (P80).
We assume the units of Ei are kWh/t.
The equation that relates this parameters and the power is (size of particles in μm):

The power needed to process 50 ton/hor is

2) The density of the packed bed can be expressed as

being f the fraction and ρ the density of every fraction. We know that the density of the void is 0 (ρv=0) and that fv=1-fs (the sum of the fractions ois equal to the total space).
Then we can rearrange

The void fraction of the bed is 0.37.
Answer:
V = 42.6 L
Explanation:
Given data:
Number of moles of Cl₂ = 1.9 mol
Temperature and pressure = standard
Volume occupy = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 1.9 mol ×0.0821 atm.L /mol.K × 273.15 k
V = 42.6 atm.L / 1 atm
V = 42.6 L