Answer:
B
Explanation:
<em>A. His speed is 0 m/s
</em>
<em>B. His velocity is 12 m/s
</em>
<em>C. His velocity is 0 m/s
</em>
<em>D. His acceleration is 12 m/s</em>
Total distance traveled by John = 120 + 120 = 240 meters
Total time taken by John to cover the distance = 10 + 10 = 20 s
<em>Average speed of John = total distance traveled/total time taken</em>
= 240/20 = 12 m/s
Hence, the average speed/velocity of John throughout the journey is 12 m/s.
The correct option is B.
Answer:
Positively charged objects have electrons; they simply possess more protons than electrons.
Explanation:
2. An object that is electrically neutral contains only neutrons. Electrically neutral atoms simply possess the same number of electrons as protons.
<h3>Information:</h3>
If an atom has an equal number of protons and electrons, its net charge is 0. If it gains an extra electron, it becomes negatively charged and is known as an anion.
<h3>Tips:</h3>
If it loses an electron, it becomes positively charged and is known as a cation.
<h2>I hope this answers help you! :></h2>
Answer: it would be A
Explanation: how are we to measure the air of a square mile
<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars