Answer:
there are uncountable sun are there but sun is star therefore there are uncountable stars are there
Answer:
a)
and
b) t = γt', so it is 8.35 s.
Explanation:
a) The equation of Lorentz transformations is given by:
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
- x' = 0
- t' = 5.00 s
- u =0.800 c, c is the speed of light 3*10⁸ m/s






Now, to find t we apply the same analysis:
but as x'=0 we just have:
b) Here, Mavis reads 5 s on her watch and Stanley measured the events at a time affected by the Lorentz factor, in other words t = γt', if we see it is the same a) part. So the time interval will be equal to 8.35 s.
I hope it helps you!
Answer:
kettles: holes left by glaciers.
cirques: three-sided valleys
erratics: large, out-of-place rocks bouldersleft by glaciers.
drumlins: egg-shaped hills
Explanation: APEX
Answer:
1.5 kgms⁻¹
Explanation:
Momentum can be defined as "<em>mass in motion</em>."
The amount of momentum that an object has is dependent upon two factors
- mass of the moving object
when there is a change in the velocity , it creates a change in momentum also
when we consider that we can mathematically show this,In terms of an equation,
Change in momentum (ΔΡ) = m(Δv)
where (Δv) - change in velocity
<em>(Δv) = final velocity - initial velocity</em>
Change in momentum (ΔΡ) = m(Δv)
= 0.1×([55-40])
= 1.5 kgms⁻¹