Answer:
1.47 atm
Explanation:
Step 1: Calculate the moles corresponding to 41.6 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
41.6 g × 1 mol/32.00 g = 1.30 mol
Step 2: Convert 30.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 30.0 + 273.15 = 303.2 K
Step 3: Calculate the pressure exerted by the oxygen
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 1.30 mol × (0.0821 atm.L/mol.L) × 303.2 K / 22.0 L = 1.47 atm
Because ecosystems don't change over one day, they change over a long period of time. Plus, something that happens may be because of more than just one change.
The correct description for an atom of helium would be option C. An atom of helium has its valence electrons in its first energy level, it wouldn't and can't satisfy the Octet rule as it only has 2 electrons, but with 2, it has a full shell, as the first energy level can hold only 2 electrons.
Answer:
c. The reaction will proceed rapidly from left to right.
Explanation:
The variation of the free Gibbs energy doesn't tell anything about the speed of reaction.
On the other hand, when ΔGo is negative: the reaction is spontaneous, thermodynamically favourable, and the products are more stable than the reactants
Answer: 300 K
Explanation:
Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles)

Given : V= 6.0 L
k= 0.020 L/K
T=?


Thus temperature of the gas is 300 K.