Answer : The power absorbed by the bulb is, 0.600 W
Explanation :
As we know that,
Power = Voltage × Current
Given:
Voltage = 3 V
Current = 200 mA = 0.200 A
Conversion used : (1 mA = 0.001 A)
Now put all the given values in the above formula, we get:
Power = Voltage × Current
Power = 3V × 0.200 A
Power = 0.600 W
Thus, the power absorbed by the bulb is, 0.600 W
The correct answer is C. Final Velocity
Hope this helped!
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
<h3>What is the average speed of the train?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Distance traveled = 221miles
- Elapsed time = 3 hours and 40 minutes
First we convert miles to meters and Hours minutes to seconds.
221 miles = ( 221 × 1609.344 )m = 355665.024 meters
3 hours and 40 minutes = ( 3×60×60)s + ( 40×60)s
= 10800s + 2400s
= 13200s
Now, determine the average speed.
Speed = Distance ÷ time
Speed = 355665.024m / 13200s
Speed = 26.944m/s
Given the distance traveled and time elapsed, the average speed of the train is approximately 26.944m/s.
Learn more about speed here: brainly.com/question/7359669
#SPJ1
Answer:
48.16 %
Explanation:
coefficient of restitution = 0.72
let the incoming speed be = u
let the outgoing speed be = v
kinetic energy = 0.5 x mass x 
- incoming kinetic energy = 0.5 x m x
- coefficient of restitution =

0.72 =
v = 0.72u
therefore the outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5184 (0.5 x m x
)
recall that 0.5 x m x
is our incoming kinetic energy, therefore
outgoing kinetic energy = 0.5184 x (incoming kinetic energy)
from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.
The energy lost would be 100 - 51.84 = 48.16 %