Answer:
It will take 126.84 years to pay off the debt
Explanation:
Total debt = $14,000,000,000,000.00
Paid $3,500 per second
Number of seconds to pay off the debt will be:
14 ×10^12 /3500
Number of seconds = 4× 10^9 seconds
Converting seconds to year:
I second = 3.171 ×10^-8 calendar year
Therefore, number of years it will take to pay off $14 Trillion =( 4 ×10^9 ) × ( 3.171 × 10^-8)
Number of years = 126.84 years
The famous Newton’s Third Law states that “For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.”
By using this,
10grams or 0.01kg of bullet with speed 400 m/sec and 5kg gun recoil with speed suppose ‘v’.
0.01×400=5×v
4/5=v
v=0.8m/sec ANSWER.
Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer:
<h2>468,750 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>468,750 J</h3>
Hope this helps you