The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
The diameter of the sphere is 2cm.
<h3>How to calculate the diameter?</h3>
From the diagram, the first sphere on the ruler is at 4cn and the last sphere is at 12cm.
Therefore, the length will be:
= 12 - 4.
= 8cm
The diameter of one sphere will be:
= Length / 4
= 8/4
= 2
Therefore, the diameter of the sphere is 2cm.
Note that the second question wasn't found online.
Learn more about diameter on:
brainly.com/question/358744
#SPJ1
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.