The 'strength' of the electric field is the force on 1C of charge at that point.
At this 'certain location', the field is 40/5 = 8 newtons per coulomb = <u>8 volts</u>
Answer:
M = 328.70g
Explanation:
From the given values:
V = 346 cm³
M of 1 cm³ of Polythene = 0.95g or 95/100g
Solve:
M = <u>(95×346)</u>
10
= <u>3</u><u>2</u><u>8</u><u>7</u><u>0</u>
100
M = 328.70g
Answer:
Q= -6900 J
Explanation:
use the formula Q=mC(T_2 - T_1) and sub in givens
Q=mC(T_2 - T_1)
Q= (200 g)(0.444 J/g°C)(22-100)
Q= -6900 J
The negative sign means heat is lost, which agrees with the decrease in temperature
The second ball traveled a greater distance when compared to the first ball because the second ball spent more time in motion.
The given parameters;
- time of fall of the first ball, t = 1 s
- time of fall of the second ball, t = 3 s
The distance traveled by each ball is calculated using the second equation of motion as shown below.
The distance traveled by the first ball is calculated as follows;
The distance traveled by the second ball is calculated as follows;
Thus, the second ball traveled a greater distance because it spent more time in motion.
Learn more here:brainly.com/question/5868480
Answer:
During a typical school day all forms of eneergy is being utilised and also transfer of energy takes place from one form to another.
Explanation:
Chemical energy- A bunsen burner burning a beaker filled with water.
Heat energy- The water in the beaker absorbing the heat from the burner.
Electrical energy- Running Fans and lights in a classroom by switches.
Solar energy- Solar energy harnessed by solar panels to run the fans and lights by converting it into electrical energy.
Potential energy- A ball being held by a student at a certain height possesses energy due to gravity.
Kinetic energy- The same ball being left by the boy from a certain height produces kinetic energy