Answer:
0.681 atm
Explanation:
To solve this problem, we make use of the General gas equation.
Given:
P1 = 785 torr
V1 = 2L
T1 = 37= 37 + 273.15 = 310.15K
P2 = ?
V2 = 3.24L
T2 = 58 = 58+273.15 = 331.15K
P1V1/T1 = P2V2/T2
Now, making P2 the subject of the formula,
P2 = P1V1T2/T1V2
P2 = [785 * 2 * 331.15]/[310.15 * 3.24]
P2 = 515.715 Torr
We convert this to atm: 1 torr = 0.00132 atm
515.715 Torr = 515.715 * 0.00132 = 0.681 atm
Answer:
There is 54.29 % sample left after 12.6 days
Explanation:
Step 1: Data given
Half life time = 14.3 days
Time left = 12.6 days
Suppose the original amount is 100.00 grams
Step 2: Calculate the percentage left
X = 100 / 2^n
⇒ with X = The amount of sample after 12.6 days
⇒ with n = (time passed / half-life time) = (12.6/14.3)
X = 100 / 2^(12.6/14.3)
X = 54.29
There is 54.29 % sample left after 12.6 days
Answer:
Yes
Explanation:
Is this a question or what?
Answer:
Using the coarse adjustment knob of the microscope in high power may lead to the breaking of the slide if adjusted and raised the slide too much which can damage the sample as well as the high power lens.
In this case, I would recommend using the fine adjustment knob and moving away from the end of the viewing area of the microscope so there would no collision take place. The fine adjustment will help to get a clear image.