Given :
0.00072 M solution of
at
.
To Find :
The concentration of
and pOH .
Solution :
1 mole of
gives 2 moles of
ions .
So , 0.00072 M mole of
gives :
![[OH^-]=2 \times 0.00072\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2%20%5Ctimes%200.00072%5C%20M)
![[OH^-]=0.00144\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00144%5C%20M)
![[OH^-]=1.44\times 10^{-3}\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.44%5Ctimes%2010%5E%7B-3%7D%5C%20M)
Now , pOH is given by :
![pOH=-log[OH^-]\\\\pOH=-log[1.44\times 10^{-3}]\\\\pOH=2.84](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D-log%5B1.44%5Ctimes%2010%5E%7B-3%7D%5D%5C%5C%5C%5CpOH%3D2.84)
Hence , this is the required solution .
Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation:
<span><span>The reaction is as follows:
C6H6 </span>+ HNO3 + H2SO4 ------------> </span>C6H5NO2<span> + H</span>2<span>O
(BENZENE) (NITRIC ACID)(CATALYST)
</span>NO2(+) is the electrophile that acctacks on the benzene ring in nitration process.
There is only one product in a synthesis reaction.