Seeing signs of a chemical reaction does not always mean that a reaction is happening. For example, a gas (water vapor) is given off when water boils. ... You can tell that it is a physical change because water vapor can condense to form liquid water. In a chemical change, a new substance must be produced.
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M
Answer:
Identical
Explanation:
Both compounds are identical. If you rotate the compound on the left 60 degree anticlockwise you will get the compound on the right.
These are not isomers of each other because they have same structural and molecular formulas.
Also, they are related to each other because they are the same
Find the moles of BaSO4 first. Then since we know it's a one to one ratio from barium chloride to barium sulfate we can just solve for liters.
<span>First you need to find the moles BaSO4 , and the you will require to find barium sulfate in liters.
</span>12.00gBaSO4 / 233.31 grams per mole
=.05141moles
Molarity=moles/liters
Hence,
Liters=.05141moles/.6Molarity
=.85 liters
Answer: hi theree, the answer is c. the processes of endocytosis and exocytosis occur here
hope this helps, have a good day :)
Explanation: