Answer:
A calculator has an endifiite shape because all of its atoms are touching each other
1)
-Lithium: Lithium got 3 protons, so it atomic number is 3. It is located on the first column of the periodic table, and belonging to the alkali metal. So lithium is a metal. Lithium is highly reactive.
-Neon: It is located on the 18th column of the periodic table, and belong to the noble gases. So Neon is a nonmetal. Neon's reactivity is very low.
-Fluorine: Located on the 17th column of the periodic metal, fluorine is a nonmetal, and belong to the halogen family. Fluorine's reactivity is high.
2)
-Vertical columns of the periodic table are called columns. There is 18 column in the periodic table, and each one represent a chemical family.
-Horizontal rows of the periodic table care called periods. There is 7 periods in the periodic table.
-The number of protons in an atom is that element's atomic number. And since the atom is electrically neutral, the number of protons is equal to the number of electrons. So if you have the number of electrons, you can still find the atomic number.
-The total of protons and neutrons in an atom is that element's atomic mass. Based on the formula A = Z + N, where A represents the atomic mass, Z the atomic number (number of protons) and N the number of neutrons.
-The elements in group 1 are the most reactive metals. This group is called the Alkali metals. They only have 1 electron in their outer shell which makes them always ready to lose an electron in an ionic bonding.
-The elements in group 17 are the most reactive nonmetals. This group is called the Halogens, with 7 electrons in their outer shell which makes them always ready to win an electron in an ionic bonding.
-The elements in group 18 are the most unreactive elements. This group is called the Noble gases. Their outer shell is always full, so it can't do reactions.
Hope this Helps! :)
Answer:
HNO₃.
Explanation:
- It is known that acids decrease the pH of the solution, while bases increase the pH of the solution.
So, HF and HNO₃ decrease the pH of the solution as they produce H⁺ in the solution.
While, KOH and NH₃ increase the pH of the solution as they produce OH⁻ in the solution.
HNO₃ will decrease the pH of the solution greater than HF.
- Because HNO₃ is strong acid that decomposes completely to produce H⁺ more than the same concentration of HF that is a weak acid which does not decomposed completely to produce H⁺.
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
The specific heat of water is higher than the specific heat of concrete.