Answer: 502 Joules
Explanation:
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 40.0 mL
Putting values in above equation, we get:

When metal is dipped in water, the amount of heat released by lead will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

q = heat absorbed by water
= mass of water = 40.0 g
= final temperature of water = 20.0°C
= initial temperature of water = 17.0°C
= specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![q=40.0\times 4.186\times (20.0-17.0)]](https://tex.z-dn.net/?f=q%3D40.0%5Ctimes%204.186%5Ctimes%20%2820.0-17.0%29%5D)

Hence, the joules of heat were re-leased by the lead is 502
The answer is 615.91 grams of <span>n2f4
Solution:
225g F2 x [(1molF2)/(38gramsF2)] x [</span>(1molF2)/(1molN2F4)] x [(104.02 grams N2F4)/(1molN2F4)]
=615.91 grams
Answer:
a) 
b) 
c) 
Explanation:
Hello,
a) In this case, the given height in cm is:

And the radius in cm is:

Thus, the volume in cubic centimeters which is also equal in mL (1cm³=mL) is:

b) In this case, the given height in mm is:

And the radius in mm is:

Thus, the volume in cubic millimeters is:

c) Finally, since 1000 mL equal 1 L, the required density in g/L turns out:

Best regards.
Answer:
The answer is
<h2>155 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of bromine = 50 mL
density = 3.10 g/cm³
It's mass is
mass = 50 × 3.10
We have the final answer as
<h3>155 g</h3>
Hope this<u> </u>helps you
Answer: - 436.5 kJ.
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we divide the reaction by half then the
will also get halved and on reversing the reaction , the sign of enthlapy changes.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is -436.5 kJ.