Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.
Development of carbonation
Answer:
They are heavy metals.
Explanation:
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers.
Answer:
increase in temperature of the intrinsic semiconductor
Explanation:
- If the p-side has a higher doping concentration, it implies that number of holes (positive ion) increased which is greater than number of electron (negative ion) in the n-side
- in order to balance the intrinsic concentration, that is to balance the number of holes and electrons which depends on temperature.
- an increase in the temperature of the intrinsic semiconductor (p-side), increases the number of electron but number of holes remains constant.
A balance in the intrinsic concentration helps in tuning to the same radio channel.