You can calculate the excess reactant by subtracting the mass of excess reagent consumed from the total mass of reagent given therefore,
The answer: Theoretical yield is 121.60 g of NH₃
Excess reactant is H₂
Rate limiting reactant is N₂
explanation: 100 g of Nitrogen
100 g of hydrogen
We are required to identify the theoretical yield of the reaction, the excess reactant and the rate limiting reagent.
We first write the equation for the reaction between nitrogen and hydrogen;
N₂ + 3H₂ → 2NH₃
From the reaction 1 mole of nitrogen reacts with 3 moles of Hydrogen gas.
Secondly we determine the moles of nitrogen gas given and hydrogen gas given;
Moles of Nitrogen gas
Moles = Mass ÷ Molar mass
Molar mass of nitrogen gas = 28.0 g/mol
Moles of Nitrogen gas = 100 g ÷ 28 g/mol 3.57 moles
Moles of Hydrogen gas
Molar mass of Hydrogen gas = 2.02 g/mol
Moles = 100 g ÷ 2.02 g/mol
= 49.50 moles
From the mole ratio given by the equation, 1 mole of nitrogen requires 3 moles of Hydrogen gas.
Thus, 3.57 moles of Nitrogen gas requires (3.57 × 3) 10.71 moles of Hydrogen gas.
This means, Nitrogen gas is the rate limiting reagent and hydrogen gas is the excess reactant.
Third calculate the theoretical yield of the reaction.
1 mole of nitrogen reacts to from 2 moles of ammonia gas
Therefore;
Moles of ammonia gas produced = Moles of nitrogen × 2
= 3.57 moles × 2
= 7.14 moles
But; molar mass of Ammonia gas is = 17.03 g/mol
Therefore;
Mass of ammonia gas produced = 7.14 moles × 17.03 g/mol
= 121.59 g
= 121.60 g
Thus, the theoretical amount of ammonia gas produced is 121.60 g
0.20 moles of iron will be formed in the reaction.
Explanation:
The balanced chemical equation for the reaction between iron (iii) oxide and carbon monoxide to form Fe is to be known first.
the balanced reaction is :
Fe2O3 + 3CO⇒ 2 Fe + 3 CO2
so from the data given the number of moles of carbon monoxide can be known:
3 moles of CO reacted with Fe2O3 to form 2 moles of iron in the reaction.
Number of moles of CO is 6.20 moles
11.6 gm of iron is formed
so the number of moles of iron formed is calculated as
n = mass of iron ÷ atomic weight of iron
= 11.6 ÷ 55.84
= 0.20 moles of iron will be formed when 11.6 gram of iron is produced.
1 kpa = 7.5 mm of Hg [Remember it or can be found on internet ]
So, 275 kpa = 7.5 x 275 = 2062.5 mm of Hg
Answer:
an atom or molecule with a net electric charge due to the loss or gain of one or more electrons