Relatively hot objects emit visible light.
Some examples:
==> the wire coils in the toaster;
==> the spoon that you stuck in the flame on the stove;
==> the fine wire in the lightbulb when current goes through it.
VERY radioactive objects also do that. But if you're actually
standing there watching an object that's THAT radioactive,
then you're in big trouble.
To find out how much work he has done, we must first calculate force using the force formula (F= Mass*Acceleration). In this case, mass is 79.4 and acceleration is the gravitational constant of 9.8m/s, plugging this into the formula we find that force is 778.12Newtons. Next, we need to multiply force by the distance to get the amount of energy used to lift his partner once. Which is 778.12 * .945 = 735.32. Finally, we need to multiply 735.32 by the number of times he lifts his partner, 33, to get 735.32 * 33 to find that the energy he has expended 24,265.56 Joules of energy.
Given:
Time: 3.5 hrs
Velocity: 120 miles/hr
Now Distance= Speed × Time
Now Velocity and speed have the same magnitude. Velocity being a vector quantity has a definite direction. Whereas speed is a scalar quantity,it indicates only the magnitude an doesn't define any direction.
Hence Distance = Velocity x time
Distance = 3.5 × 120 = 420 miles
Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N