Answer:
40 meters. look for the dot above the 20 on the x-axis and follow it over to the left.
Explanation:
The answer is: [C]: "4" .
___________________________________________________
Note: To balance this equation, the coefficient, "4", should be placed in front of the PCl₃ ; and the coefficient, "6", should be placed in front of the Cl₂ .
________________________________________________________
The balanced equation is:
__________________________________________________
P₄ (s) + 6 Cl₂ (g) <span>→ 4 </span>PCl₃ (l) .
______________________________________________________
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
Answer:
Explanation:
correct options
a ) Their electrical potential energy keeps decreasing
Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases
so a ) option is correct
b ) Their acceleration keeps decreasing
As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .
c ) c. Their kinetic energy keeps increasing
Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .
For a full wave bridge you don't want a center tap