Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Answer:
The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s
Explanation:
m= 55.6 g = 0.0556 kg
t= 2.8 ms = 2.8 * 10⁻³ s
F= 1290 N/ms * t - 330 N/ms² * t²
F= 1024.8 N
F*t= m * V
V= F*t/m
V= 51.6 m/s
Answer:
Explanation:
Assuming school is at the end of the 20 mile route, then
20 mi / 35 mi/hr = 0.57142...hr
which is about 34 minutes 17 seconds
Answer:
Eletromagnetic radiation which is also known as visible light.
Explanation: