<span>XY4Z2-->Square planar (Electron domain geometry: Octahedral) sp3d2
XY4Z-->Seesaw (Electron domain geometry: Trigonal bipyramidal) sp3d
XY5Z-->Square pyramidal (Electron domain geometry: Octahedral) sp3d2
XY2Z3-->Linear (Electron domain geometry: Trigonal bipyramidal) sp3d
XY2Z-->Bent (Electron domain geometry: Trigonal planar) sp2
XY3Z-->Trigonal pyramidal (Electron domain geometry: Tetrahedral) sp3
XY2Z2-->Linear (Electron domain geometry: Tetrahedral) sp3
XY3Z2-->T shaped (Electron domain geometry: Trigonal bipryamidal) sp3d
XY2-->Linear (Electron domain geometry: Linear) sp
XY3 Trigonal planar (Electron geometry: Trigonal planar) sp2
XY4-->Tetrahedral (Electron domain geometry: tetrahedral) sp3
XY5-->Trigonal bipyramidal (Electron domain geometry: Trigonal bipyramidal) sp3d
XY6-->Octahedral (Electron domain geometry: Octahedral) sp3d2</span>
Answer:
1.6g/mL
Explanation:
Density equation is D=m/v
Density = g/mL
m=mass of sample in grams
v = volume of sample in mL
The volume of a square can be calculated by V=l*w*h.
In this case it is 5cm*5cm*5cm = 125cm^3
Since we know that 1cm^3 ~ 1mL we can convert the volume to mL as so:
125cm^3 (1mL/(1cm^3)) = 125mL
Then simply plug into the density equation:
D=200g/125mL = 1.6g/mL
Answer:
More sweet and cute with the little ones on the surface and a little more
<span>An object at rest will stay at rest unless acted upon by a unbalanced force.
</span>