1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
5

Three ideal polarizing filters are stacked, with the polarizing axis of the second and third filters at 21 degrees and 61 degree

s, respectively, to that of the first. If unpolarized light is incident on the stack, the light has intensity 60.0 w/cm^ 2 after it passes through the stack.
If the incident intensity is kept constant:
1) What is the intensity of the light after it has passed through the stack if the second polarizer is removed?
2) What is the intensity of the light after it has passed through the stack if the third polarizer is removed?
Physics
1 answer:
kvv77 [185]3 years ago
7 0

Answer:

1

When second polarizer is removed the intensity after it passes through the stack is    

                    I_f_3 = 27.57 W/cm^2

2 When third  polarizer is removed the intensity after it passes through the stack is    

                I_f_2 = 102.24 W/cm^2

Explanation:

  From the question we are told that

       The angle of the second polarizing to the first is  \theta_2 = 21^o  

        The angle of the third  polarizing to the first is     \theta_3 = 61^o

        The unpolarized light after it pass through the polarizing stack   I_u = 60 W/cm^2

Let the initial intensity of the beam of light before polarization be I_p

Generally when the unpolarized light passes through the first polarizing filter the intensity of light that emerges is mathematically evaluated as

                     I_1 = \frac{I_p}{2}

Now according to Malus’ law the  intensity of light that would emerge from the second polarizing filter is mathematically represented as

                    I_2 = I_1 cos^2 \theta_1

                       = \frac{I_p}{2} cos ^2 \theta_1

The intensity of light that will emerge from the third filter is mathematically represented as

                  I_3 = I_2 cos^2(\theta_2 - \theta_1 )

                          I_3= \frac{I_p}{2}(cos^2 \theta_1)[cos^2(\theta_2 - \theta_1)]

making I_p the subject of the formula

                  I_p = \frac{2L_3}{(cos^2 \theta [cos^2 (\theta_2 - \theta_1)])}

    Note that I_u = I_3 as I_3 is the last emerging intensity of light after it has pass through the polarizing stack

         Substituting values

                      I_p = \frac{2 * 60 }{(cos^2(21) [cos^2 (61-21)])}

                      I_p = \frac{2 * 60 }{(cos^2(21) [cos^2 (40)])}

                           =234.622W/cm^2

When the second    is removed the third polarizer becomes the second and final polarizer so the intensity of light would be mathematically evaluated as

                      I_f_3 = \frac{I_p}{2} cos ^2 \theta_2

I_f_3 is the intensity of the light emerging from the stack

                     

substituting values

                     I_f_3 = \frac{234.622}{2} * cos^2(61)

                       I_f_3 = 27.57 W/cm^2

  When the third polarizer is removed  the  second polarizer becomes the

the final polarizer and the intensity of light emerging from the stack would be  

                  I_f_2 = \frac{I_p}{2} cos ^2 \theta_1

I_f_2 is the intensity of the light emerging from the stack

Substituting values

                  I_f_2 =  \frac{234.622}{2} cos^2 (21)

                     I_f_2 = 102.24 W/cm^2

   

You might be interested in
Who made the first game
likoan [24]
I think the answer is D

Hope this helps
8 0
2 years ago
When electrons are removed from an atom, the atom becomes positively charged and is referred to as a(n)
sesenic [268]

Answer is Cation

whilst an anion is the one that is negatively charged after gaining electrons

7 0
3 years ago
Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kc
IgorC [24]

Answer:

The answers to the questions are;

a. The number of times the student run the flight of stairs to lose 1.00 kg of fat is 829.23 times.

b. The average power output, in watts and horsepower, as he runs up the stairs is 158.026 watts.

c. The act of climbing the stairs is not a practical way to lose weight has to lose 1 kg of fat, the student needs to workout for about 26.49 hrs or 1.104 days.

Explanation:

To solve the question, we write out the known variables as follows

1 g of fat = 9.00kcal

Number of steps the student climbs = 95 steps

Height of each step = 0.150 m

Time it takes for the student to reach the top of the stairs = 57.5 s.

Efficiency of human muscles = 20 %

Mass of student, m = 65 kg

a. From the question, the energy expended by the student in climbing the stairs is the "work done" by the student.

The "work done" is the height climbed resulting in the gaining of gravitational potential energy P. E..

That is work done, W, =  P. E. = m·g·h

Where:

h = The total height climbed by the student

g = Acceleration due to gravity = 9.81 m/s²

Therefore;

h = Height of each step × Number of steps the student climbs =

  = 0.150 m/(step) × 95 steps = 14.25 m

Therefore, P. E. = 65 kg × 9.81 m/s² × 14.25 m = 9086.5125 kg·m²/s²

                          = 9086.5125 J

We remember that the efficiency of the muscle is 20 %

The formula for efficiency is

Efficiency = \frac{Ene rgy Out put}{Energ y In put} \times 100 %

The work produced by the muscle =  Energy Output = 9086.5125 J

Energy input is given by

\frac{Out put} {Effici ency} = 9086.5125 J/ (0.2) = 45432.5625 J

= 45.432 kJ

From the question, 1 g of fat = 9.00 kcal and

1 kcal = 4186 J

Therefore 1 g of fat can release 9.00 kcal × 4186 J = 37674 J

Therefore 1 kg of fat = 1000 g = 1000 × 37674 J = 37674 kJ

To consume the energy in 1 kg of fat the student therefore will run up the foight of stairs \frac{37674 kJ}{45.432 kJ} times to make up the 37674 kJ energy contained in 1 kg of fat

That is  \frac{37674 kJ}{45.432 kJ} =  829.23 times

b. Power is the rate of doing work

That is Power output = \frac{ WorkO utput }{Time} = \frac{9086.5125 J}{57.5 s} = 158.026 watts

c. No as the activity student will have to spend a total time of

829.23 × 57.5 s = 47680.67 s climbing up the stairs alone  and

47680.67 s = ‪13.24 Hours climbing up of which if the time to climb down is the same s climbing up, then we ave total time = 2× ‪13.24 Hours  

= 26.49 hrs = 1.104 days exercising which is not humanly possible.

3 0
3 years ago
Describe the extent of the swing !
gizmo_the_mogwai [7]

Answer:Definition of swing it. informal. : to do or manage something successfully If he can swing it, he'll visit next

3 0
3 years ago
Consider a uniform sphere, which has a mass of 4.80 kg and a radius of 22.0 cm. A tangential force of 11.2 N is applied to the o
Tcecarenko [31]

Answer:

The moment of inertia of this sphere is 0.0929\ kg-m^2.                  

Explanation:

It is given that,

Mass of the sphere, m = 4.8 kg

Radius of the sphere, r = 22 cm = 0.22 m

Tangential force, F = 11.2 N

The moment of inertia of the uniform sphere is given by :

I=\dfrac{2}{5}mr^2

I=\dfrac{2}{5}\times 4.8\ kg\times (0.22\ m)^2

I=0.0929\ kg-m^2

So, the moment of inertia of this sphere is 0.0929\ kg-m^2. Hence, this is the required solution.              

8 0
3 years ago
Other questions:
  • A girl performed 50 J of work lifting a heavy box. It took her 5 seconds to lift the box. What was her power?
    13·1 answer
  • A 2.9 gram bullet is shot into a tree stump. It enters at a velocity of 304 m/sec and comes to rest after having penetrated the
    15·1 answer
  • I don't understand this question whoever helps thank you!
    9·1 answer
  • Momentum is what kind of quantity?
    13·2 answers
  • As you approach a roundabout, you should __________________.
    7·2 answers
  • Index fossils are used to determine the relative ages of rock and fossils and are also used to
    15·1 answer
  • A cyclist slows down from 8m/s to 2m/s in 3 seconds. What is the<br> acceleration?
    11·2 answers
  • A lion with a mass of 190 kg is chasing a gazelle with a mass of 15 kg. The distance between the lion and the gazelle is 2 meter
    6·1 answer
  • Actually, Sherman, there are more black moths than white ones because...
    5·1 answer
  • Help plz lol I’ll you’ll get 10 points
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!