1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
2 years ago
5

Three ideal polarizing filters are stacked, with the polarizing axis of the second and third filters at 21 degrees and 61 degree

s, respectively, to that of the first. If unpolarized light is incident on the stack, the light has intensity 60.0 w/cm^ 2 after it passes through the stack.
If the incident intensity is kept constant:
1) What is the intensity of the light after it has passed through the stack if the second polarizer is removed?
2) What is the intensity of the light after it has passed through the stack if the third polarizer is removed?
Physics
1 answer:
kvv77 [185]2 years ago
7 0

Answer:

1

When second polarizer is removed the intensity after it passes through the stack is    

                    I_f_3 = 27.57 W/cm^2

2 When third  polarizer is removed the intensity after it passes through the stack is    

                I_f_2 = 102.24 W/cm^2

Explanation:

  From the question we are told that

       The angle of the second polarizing to the first is  \theta_2 = 21^o  

        The angle of the third  polarizing to the first is     \theta_3 = 61^o

        The unpolarized light after it pass through the polarizing stack   I_u = 60 W/cm^2

Let the initial intensity of the beam of light before polarization be I_p

Generally when the unpolarized light passes through the first polarizing filter the intensity of light that emerges is mathematically evaluated as

                     I_1 = \frac{I_p}{2}

Now according to Malus’ law the  intensity of light that would emerge from the second polarizing filter is mathematically represented as

                    I_2 = I_1 cos^2 \theta_1

                       = \frac{I_p}{2} cos ^2 \theta_1

The intensity of light that will emerge from the third filter is mathematically represented as

                  I_3 = I_2 cos^2(\theta_2 - \theta_1 )

                          I_3= \frac{I_p}{2}(cos^2 \theta_1)[cos^2(\theta_2 - \theta_1)]

making I_p the subject of the formula

                  I_p = \frac{2L_3}{(cos^2 \theta [cos^2 (\theta_2 - \theta_1)])}

    Note that I_u = I_3 as I_3 is the last emerging intensity of light after it has pass through the polarizing stack

         Substituting values

                      I_p = \frac{2 * 60 }{(cos^2(21) [cos^2 (61-21)])}

                      I_p = \frac{2 * 60 }{(cos^2(21) [cos^2 (40)])}

                           =234.622W/cm^2

When the second    is removed the third polarizer becomes the second and final polarizer so the intensity of light would be mathematically evaluated as

                      I_f_3 = \frac{I_p}{2} cos ^2 \theta_2

I_f_3 is the intensity of the light emerging from the stack

                     

substituting values

                     I_f_3 = \frac{234.622}{2} * cos^2(61)

                       I_f_3 = 27.57 W/cm^2

  When the third polarizer is removed  the  second polarizer becomes the

the final polarizer and the intensity of light emerging from the stack would be  

                  I_f_2 = \frac{I_p}{2} cos ^2 \theta_1

I_f_2 is the intensity of the light emerging from the stack

Substituting values

                  I_f_2 =  \frac{234.622}{2} cos^2 (21)

                     I_f_2 = 102.24 W/cm^2

   

You might be interested in
Cardiovascular exercise can
UkoKoshka [18]
Can <span>get your heart rate up and increases blood circulation throughout the body.</span>
3 0
3 years ago
Read 2 more answers
You have a summer job at a company that developed systems to safely lower large loads down ramps. Your team is investigating a m
Fofino [41]

Answer:

Note that the emf induced is

emf = B d v cos (A)

---> v = emf / [B d cos (A)]

where

B = magnetic field

d = distance of two rails

v = constant speed

A = angle of rails with respect to the horizontal

Also, note that

I = emf/R

where R = resistance of the bar

Thus,

I = B d v cos (A) / R

Thus, the bar experiences a magnetic force of

F(B) = B I d = B^2 d^2 v cos (A) / R, horizontally, up the incline.

Thus, the component of this parallel to the incline is

F(B //) = F(B) cos(A) = B I d = B^2 d^2 v cos^2 (A) / R

As this is equal to the component of the weight parallel to the incline,

B^2 d^2 v cos^2 (A) / R = m g sin (A)

where m = the mass of the bar.

Solving for v,

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]   [ANSWER, the constant speed, PART A]

******************************

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]

Plugging in the units,

m/s = [ [ohm * kg * m/s^2] / [T^2 m^2] ]

Note that T = kg / (s * C), and ohm = J * s/C^2

Thus,

m/s = [ [J * s/C^2 * kg * m/s^2] / [(kg / (s * C))^2 m^2] ]

= [ [J * s/C^2 * kg * m/s^2] / [(kg^2 m^2) / (s^2 C^2)]

As J = kg*m^2/s^2, cancelling C^2,,

= [ [kg*m^2/s^2 * s * kg * m/s^2] / [(kg^2 m^2) / (s^2)]

Cancelling kg^2,

= [ [m^2/s^2 * s * m/s^2] / [(m^2) / (s^2)]

Cancelling m^2/s^2,

= [s * m/s^2]

Cancelling s,

=m/s   [DONE! WE SHOWED THE UNITS ARE CORRECT! ]

8 0
3 years ago
Theories and Laws.
Scilla [17]
Laws and theories are similar in that they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence.
6 0
3 years ago
A beam of protons enter the electric field of magnitude E = 0.5 N/C between a pair of parallel plates. There is a magnetic field
HACTEHA [7]

Answer:

0.217 m/s

Explanation:

The protons in the beam passes undeflected when the electric force is equal to the magnetic force:

qE = qvB

where

q is the proton's charge

E is the magnitude of the electric field

v is the speed of the protons

B is the magnitude of the magnetic field

Re-arranging the equation,

v=\frac{E}{B}

And by substituting

E = 0.5 N/C

B = 2.3 T

We find

v=\frac{0.5}{2.3}=0.217 m/s

3 0
3 years ago
It moved from 0 cm to 5 cm at a constant speed of 1 cm/s.
Stels [109]

It moved from 0 cm to 4 cm at a constant speed of 1 cm/s.

8 0
3 years ago
Other questions:
  • A hydraulic lift is made by sealing an ideal fluid inside a container with an input piston of cross-sectional area 0.004 m2 , an
    7·1 answer
  • At a race track, a car of mass 1150 kg crashes into a concrete wall at a speed of 85 m/s a. If the car comes to a stop when it h
    10·1 answer
  • There is a electric train traveling north, and the wind is blowing south. Which way is the steam going.
    9·1 answer
  • describe the difference between a physical and a chemical change and explain what happens during a chemical reaction
    12·1 answer
  • Temperature is the average amount of energy of motion in each particle of a substance. It is a measure of how loud or quiet a su
    7·1 answer
  • 4. A person who walks one block north, one block east, one block south,
    9·1 answer
  • A 3.0 kg object moving 8.0 m/s in the positive x-direction has a one-dimensional elastic collision with an object of mass, M, in
    5·1 answer
  • A spring toy jumps up from the floor and comes back down to the floor. Its initial speed is 12 m/s. What is the
    8·1 answer
  • A uniformly charged conducting sphere of 1.22m radius has a surface charge density 8.13µCm-2.
    15·1 answer
  • In places such as hospital operating rooms or factories for electronic circuit boards, electric sparks must be avoided. A person
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!