<h2>Input =

, water and Output =

</h2>
Explanation:
The light reactions of photosynthesis use water and produce Oxygen, NADPH.
The equation for photosynthesis :
→ 
The process of photosynthesis in two stages -
- The first stage is called the light reaction in which the light energy from the sun is captured and converted into chemical energy stored in the form of ATP and NADPH
- The second stage is the process of conversion of ATP molecules to sugar or glucose (the Calvin Cycle)
For a light reaction -
Net Input is of,
, 
Net Output is of, 
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm
Answer:
decrease
Explanation:
Atomic radius
:
It is the distance from the center of nucleus to the outer most electronic shell.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required