Answer:
a) Keq = 4.5x10^-6
b) [oxaloacetate] = 9x10^-9 M
c) 23 oxaloacetate molecules
Explanation:
a) In the standard state we have to:
ΔGo = -R*T*ln(Keq) (eq.1)
ΔGo = 30.5 kJ/moles = 30500 J/moles
R = 8.314 J*K^-1*moles^-1
Clearing Keq:
Keq = e^(ΔGo/-R*T) = e^(30500/(-8.314*298)) = 4.5x10^-6
b) Keq = ([oxaloacetate]*[NADH])/([L-malate]*[NAD+])
4.5x10^-6 = ([oxaloacetate]/(0.20*10)
Clearing [oxaloacetate]:
[oxaloacetate] = 9x10^-9 M
c) the radius of the mitochondria is equal to:
r = 10^-5 dm
The volume of the mitochondria is:
V = (4/3)*pi*r^3 = (4/3)*pi*(10^-15)^3 = 4.18x10^-42 L
1 L of mitochondria contains 9x10^-9 M of oxaloacetate
Thus, 4.18x10^-42 L of mitochondria contains:
molecules of oxaloacetate = 4.18x10^-42 * 9x10^-9 * 6.023x10^23 = 2.27x10^-26 = 23 oxaloacetate molecules
Density of a solution is mass of solution per unit volume
Density = mass/volume
mass of solution is 46.08 g
volume of solution is 58.9 mL
since mass and volume is known, density can be calculated
density = 46.08 g / 58.9 mL = 0.78 g/mL
H2O is the missing reactant.
Just a caveat: this equation isn’t balanced.
physical change
particles retain there composition and identity
there is no change in there chemical properties of the substance
the chemical changes should be the other two.
If it is wrong I'm truly sorry.