Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation:
Given in the problem is the mass of the liquid (500 grams) and the volume of the liquid (1000 ml = 1000 cm^3).
We can use these two givens to calculate the density of the liquid using the following rule:
density = mass / volume
density = 500 / 1000 = 0.5 grams / cm^3
Comparing the calculated density with the choices we have, we can deduce that the liquid is most likely to be propane with density 0.494 g / cm^3
Answer:
The atoms in the first period have electrons in 1 energy level. The atoms in the second period have electrons in 2 energy levels. The atoms in the third period have electrons in 3 energy levels. The atoms in the fourth period have electrons in 4 energy levels.
Fossils provide a window in Earth's history by showing us how they existed in the past. They can be dated through several ways and can show us how animals and plants have evolved over millions of years. Also, fossils can help us better understand ancient disasters by the inclusion of elements (such as <span>volcanic ash or dust from major space object impacts) and how they affected the life on earth)</span>