Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
A concave lens can only form a virtual image. The correct option among all the options that are given in the question is the third option or option "C". Concave lenses are mostly thinner in the middle compared to its edges. I hope that this answer has come to your help.
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.
Answer:
18 degrees celcius = 64.4
Explanation:
Fahrenheit