We can solve the problem by using the first law of thermodynamics:
where
is the change in internal energy of the system
is the heat absorbed by the system
is the work done by the system on the surrounding
In this problem, the work done by the system is
with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is
with a negative sign as well because it is released by the system.
Therefore, by using the initial equation, we find
Let us situate this on the x axis, and let our uniform line of charge be positioned on the interval <span>(−L,0]</span> for some large number L. The voltage V as a function of x on the interval <span>(0,∞)</span> is given by integrating the contributions from each bit of charge. Let the charge density be λ. Thus, for an infinitesimal length element <span>d<span>x′</span></span>, we have <span>λ=<span><span>dq</span><span>d<span>x′</span></span></span></span>.<span>V(x)=<span>1/<span>4π<span>ϵ0</span></span></span><span>∫line</span><span><span>dq/</span>r</span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>∫<span>−L</span>0</span><span><span>d<span>x/</span></span><span>x−<span>x′</span></span></span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>(ln|x+L|−ln|x|)</span></span>
Explanation:
sound waves go through almost every thing exept solid walls
Answer:
2km
Explanation:
Given data
We are told that the direction traveled are
North>>>East>>>South
Hence the displacement is defined as the distance away from the initial position is
Initial position =18km
FInal position = 16km
The displacement = 18-16= 2km
Hence the displacement is 2km