Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Answer:
a. 240 N due east
b. 540 N due west
Explanation:
Let east be the reference direction
(a) if the resultant force has a magnitude of 390 N and points east, and the 1st force is 150N due East, then the additional force would also due east and has a magnitude of
390 - 150 = 240 N
(b) if the resultant force has a magnitude of 390 N and points west, it would be -390N is eastern reference, and the 1st force is 150N due East, then the additional force would also due east and has a magnitude of
-390 - 150 = -540 N
This force would point west
Answer:
<h2>3</h2>
Explanation:
Using the efficiency formula. Efficiency = MA/VR * 100%
MA = Mechanical Advantage
VR = velocity ratio = 
Distance moved by effort = 4.5m
distance moved by load = 1.5m
VR = 4.5/1.5 =3
Assuming efficiency is 100% (since friction can be ignored)
100% = MA/3 * 100%
1 = MA/3
MA = 3*1
MA = 3
Mechanical Advantage of the ramp is 3