Answer:
P = 1 (14,045 ± 0.03 ) k gm/s
Explanation:
In this exercise we are asked about the uncertainty of the momentum of the two carriages
Δ (Pₓ / Py) =?
Let's start by finding the momentum of each vehicle
car X
Pₓ = m vₓ
Pₓ = 2.34 2.5
Pₓ = 5.85 kg m
car Y
Py = 2,561 3.2
Py = 8,195 kgm
How do we calculate the absolute uncertainty at the two moments?
ΔPₓ = m Δv + v Δm
ΔPₓ = 2.34 0.01 + 2.561 0.01
ΔPₓ = 0.05 kg m
Δ
= m Δv + v Δm
ΔP_{y} = 2,561 0.01+ 3.2 0.001
ΔP_{y} = 0.03 kg m
now we have the uncertainty of each moment
P = Pₓ /
ΔP = ΔPₓ/P_{y} + Pₓ ΔP_{y} / P_{y}²
ΔP = 8,195 0.05 + 5.85 0.03 / 8,195²
ΔP = 0.006 + 0.0026
ΔP = 0.009 kg m
The result is
P = 14,045 ± 0.039 = (14,045 ± 0.03 ) k gm/s
Fill in the fraction: 3,600/90 = 40; turn it into a unit fraction.
40 mi/min
Answer:
Explanation:
Given:
- Mass of 1st body =

- Mass of 2nd body =

To Find:
- Magnitude of gravitational force
Solution:
Here, we have a formula
<u>Substituting the values</u>




Know More:
The applied formula for the above solution is

where,
- F
= Gravitational force - G = Gravitational constant
- M
= mass of 1st body - M
= mass of 2nd body - r = distance between two bodies
The electric force (and the gravitational force too) is inversely proportional
to the square of the distance between the objects involved.
In this question, the distance is increased by a factor of (1.25/0.95) .
So the electric force will change by the factor of (0.95/1.25)² .
The new force is
(1.32 N) · (0.95/1.25)² = 0.762... newton (rounded)
Answer:
The other end is called the south pole. When two magnets are brought together, the opposite poles will attract one another, but the like poles will repel one another. This is similar to electric charges.
Explanation: