Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²
Answer:
time spent = 0.2276
Explanation:
given data
distance = 135 mi
usual speed = 65 mph
today speed = 73 mph
solution
we get here time that is express as
time =
...................1
usual time =
= 2.0769 h
today time =
= 1.8493 h
so we get here time spent as
time spent = 2.0769 h - 1.8493 h
time spent = 0.2276
If you mean the SI Unit of GPE, the answer is J for Joules.
if that's not the question being asked, i would need a little more elaboration please :)
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.