When placing the piece of aluminium in water, the level of water will rise by an amount equal to the volume of the piece of aluminum.
Therefore, we need to find the volume of that piece.
Density can be calculated using the following rule:
Density = mass / volume
Therefore:
volume = mass / density
we are given that:
the density = 2.7 g / cm^3
the mass = 16 grams
Substitute in the equation to get the volume of the piece of aluminum as follows:
volume = 16 / 2.7 = 5.9259 cm^3
Since the water level will rise to an amount equal to the volume of aluminum, therefore, the water level will rise by 5.9259 cm^3
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:

where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:

So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
A theory is an idea that is widely agreed on by scientists and can be changed when new info comes to light while a hypothesis is an educated guess sometimes based on prior knowledge.
Answer:1.14.102 on the side of 10
Explanation: