Answer:
a) yield strength

b) modulus of elasticity
strain calculation

strain for offset yield point

=0.0046-0.002 = 0.0026
now, modulus of elasticity
= 184615.28 MPa = 184.615 GPa
c) tensile strength

d) percentage elongation

e) percentage of area reduction
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Answer:
Net Force = 0
Explanation:
Causes objects to accelerate. Balanced Forces. Two equal forces push in opposite direction causing no change in motion causing net force = 0.
Answer:
Please refer to the figure.
Explanation:
The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.
So,

This enclosed current is now to be used in Ampere’s Law.

Here,
represents the circular path of radius r. So we can replace the integral with the circumference of the path,
.
As a result, the magnetic field is
