At A, coaster is only associated with potential energy.
At B, coaster is associated with kinetic as well as potential energy.
Since the track is frictionless, no energy will be lost when coaster reaches from point A to point B. Therefore, according to conservation of energy, total energy at A should be equal to total energy at B.
Total energy at A = mgh = mg(12)
Total energy at B = mgh+ mv²/2 = mg(2) + mv²/2
∴12mg = 2mg + mv²/2
∴(12g-2g)×2 = v²
∴v² = 20g
∴v = 14m/s.
Again conserving energy at points B and C.
Total energy at B = 2mg + m(14)²/2
Total energy at C = 4mg + mv²/2
∴2mg + m(14²)/2 = 4mg + mv²/2
Solving this you get,
v = 12.52 m/s.
Therefore, speed of roller coaster at point C is 12.52 m/s.
Answer:A) he needs to find the net force acting on an object in a direction.
Explanation:
Answer:
The answer is (d) is totally reflected
Explanation:
Using the total internal reflection concept.
This concept state that:
"If the angle of incidence is greater than the critical angle then the light will not refract but it will reflect back totally"
Using the above statement, as incident angle is 42 degree and critical angle is 41 degree it means incident angle is greater than the critical angle. Therefore, light will not refract but it will totally reflected.
Answer:
B. Wave-like way with a pattern that is wave-like
Explanation:
The double slit experiment when performed with electromagnetic waves, gives a pattern of light lines and dark areas, equally spaced.
In the case of electrons we must use Broglie's duality principle that states that all things have the characteristics of particles and waves together. The characteristic observed in a given experiment depends on the type of experiment, using the relationship
p = h /λ
Where p is the amount of motion of the particle and λ the wavelength associated with this particle
In consequence of the previous one to the screen it should arrive as a wave with a wave type pattern
Let's review the answer.
A) False. The pattern is wave type
B) True. The whole process is with undulating characteristics
C) False. A wave arrives
D) False. A wave arrives
The length of the inclined plane is approximately 12 ft
The situation forms a right angle triangle.
<h3>Right triangle</h3>
Right triangle have one of its angle as 90 degrees.
Therefore,
The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.
height = 4 ft
angle(∅) = 19.45°
sin 19.45 = 4 / h
h = 4 / 0.33298412235
h = 12.0125847796
h = 12 ft
Therefore, the length of the inclined plane is approximately 12 ft
learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults