To be able to answer this, you need to have a phase diagram of Cu-Ni alloy. Create a vertical line along 40% in the x-axis. Then, create a horizontal line along the temperature at 1,300°C. The intersection lies outside of the α-L boundary.
<em>Therefore, the system consist solely of the L-phase: 100% L.</em>
Si muy bien chao que tengas un buen día
Answer:
B. PROTONS EXHIBIT STRONGER PULL ON OUTER f ORBITALS
Explanation:
Lanthanide contraction is the greater than normal decrease in the ionic radius of the lanthanide series from atomic number 57 to atomic number 71. This decrease is rather not expected of the ionic radii of these elements and they result in the greater decrease in the subsequent series of the lanthanides from the atomic number 72. The cause of which is as a result of the poor shielding effects of the nuclear charge around the electrons of the f orbitals. So therefore, protons are strongly pulled out of the 4f orbital and as a result of the poor shielding effect which causes the electrons of the 6s orbitals to be drawn more closer to the nucleus and hence resulting in a smaller atomic radii. It is worthy to note that the shielding effects of the inner electrons decreasing from s orbital to the f orbital; that is s > p > d > f. So from the decrease in the shielding effects from s to the f orbitals, lanthanide contraction results from the inability of the orbitals far away from s like the 4f orbiatls to shield the outermost shells of the lanthanide elements. So the cause of lanthanide contraction is the action of the protons which strongly pull the electrons of the f orbitals because of the poor shielding effects due to the distance of this orbital from the nucleus.
Different colors of sedimentary rock are determined by the environment where they are located. For example, red rocks form where oxygen is present. Darker sediments form when the environment is oxygen poor.
So, basically, the weather and surroundings of the rock, so B.