Answer:
Given values of Planck Constant are equivalent in English system and metric system.
Explanation:
Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.
Converting this in to metric system .
We have 1 eV = 1.6 x 10⁻¹⁹ J
Converting
4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s
So Given values of Planck Constant are equivalent in English system and metric system.
Answer:
the two factors are the mass of the objects and the coefficient of friction between them
Explanation:
internet :)
Answer:
Fractional error = 0.17
Percent error = 17%
F = 112 ± 19 N
Explanation:
Plug in the values to find the force:
F = (3.5 kg) (20 m/s)² / (12.5 m) = 112 N
Find the fractional error:
ΔF/F = Δm/m + 2Δv/v + Δr/r
ΔF/F = 0.1/3.5 + 2(1/20) + 0.5/12.5
ΔF/F = 0.17
Multiply by 100% to find the percent error:
ΔF/F × 100% = 17%
Solve for the absolute error:
ΔF = 0.17 × 112 N = 19 N
Therefore, the force is:
F = 112 ± 19 N
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2