The formula for mole fraction is:
-(1)
The solubility of oxygen gas = 1.0 mmol/L (given)
1.0 mmol/L means 1.0 mmol are present in 1 L.
Converting mmol to mol:

So, moles of oxygen = 0.001 mol
For moles of water:
1 L of water = 1000 mL of water
Since, the density of water is 1.0 g/mL.


So, the mass of water is 1000 g.
Molar mass of water = 18 g/mol.
Number of moles of water = 
Substituting the values in formula (1):


Hence, the mole fraction is
.
Answer:
a) 5,3176x10⁻⁴ moles
b) 6,85x10⁻⁴ moles
c) The appropriate formula to calculate is Henderson-Hasselbalch.
d) pH = 4,86. Acidic solution but slighty
Explanation:
a) moles of acetic acid:
9,20x10⁻³L × 57,8x10⁻³M = <em>5,3176x10⁻⁴ moles</em>
<em></em>
b) moles of sodium acetate:
56,2x10⁻³g ÷ 82,0 g/mole = <em>6,85x10⁻⁴ moles</em>
<em></em>
c) The appropriate formula to calculate is Henderson-Hasselbalch:
pH= pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
d) pH= 4,75 + log₁₀ ![\frac{[6,85x10_{-4}]}{[5,3176x10_{-4}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B6%2C85x10_%7B-4%7D%5D%7D%7B%5B5%2C3176x10_%7B-4%7D%5D%7D)
<em>pH = 4,86</em>
<em>3 < pH < 7→ Acidic solution but slighty</em>
I hope it helps!
Answer:
A dominant allele produces a dominant phenotype in individuals who have one copy of the allele, which can come from just one parent. For a recessive allele to produce a recessive phenotype, the individual must have two copies, one from each parent.
Explanation:
A dominant allele becomes a trait even if just one copy of it is present. A recessive allele does not become a trait unless both copies of the gene, one from mom and one from dad, are present. If one dominant allele and one recessive allele are present, the dominant allele trait will be expressed.
Only individuals with an aa genotype will express a recessive trait; therefore, offspring must receive one recessive allele from each parent to exhibit a recessive trait.
Answer:
The rate of temperature change does not stay constant and decreases over time because the temperature difference decreases over time.
Explanation:
The temperature difference is due to Thermal Equilibrium
Answer:
About 170-180 grams of potassium nitrate are completely dissolved in 100 g.
Explanation:
Hello!
In this case, according to the reported solubility data for potassium nitrate at different temperatures on the attached picture, it is possible to bear out that about 170-180 grams of potassium nitrate are completely dissolved in 100 g; considering that the solubility is the maximum amount of a solute that can be dissolved in a solvent, in this case water.
Best regards!