<span>Oil and water don't mix because oil is made up of non-polar molecules while water molecules are polar in nature. Because water molecules are electrically charged, they get attracted to otherwater molecules and exclude the oil molecules. (this is from wiki)</span>
The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
If you want to separate black grapes from the mixture of black and green grapes, then you will simply pick black grapes using your hands from the mixture. In this way you are actually using handpicking separation method.
Explanation:
Answer:
The question isn't worded properly, but if 1 or 2 are DECREASED, the frequency of collisions of specified molecules will decrease.
Explanation:
Catalysts only facilitate reaction once molecules collide. Increased temperature makes molecules move more, and thus collide more. For concentration, if there are more molecules in the same amount of room/liquid, there will be more collisions because there are more of the molecules to collide.
Answer:
The answer is 20 % V/V
Explanation:
We use this formula for calculate the %V/V:
%V/V= (ml solute/ml solution) x 100= (75ml/375 ml)x 100 = 20 % V/V
<em>The% V / V represents the amount of ml of solute dissolved in 100 ml of solution</em>