Carbon is not very reactive at room temperature
The chemical reaction between the reactants:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Explanation:
We have the following chemical reaction:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Complete ionic equation:
3 Ag⁺ (aq) + 3 NO₃⁻ (aq) + Fe³⁺ (aq) + 3 Cl⁻ (aq) → 3 AgCl (s) + Fe³⁺ (aq) + 3 NO₃⁻ (aq)
We remove the spectator ions and we get the net ionic equation:
Ag⁺ (aq) + Cl⁻ (aq) → AgCl (s)
where:
(aq) - aqueous
(s) - solid
Learn more about:
net ionic equation
brainly.com/question/7018960
#learnwithBrainly
The source of alpha particles in a smoke detector is the Americium.
If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Answer:
[H₃O⁺] = 3.162 × 10⁻⁹ moles / liter
Explanation:
The pH is calculated with the formula:
pH = -lg[H₃O⁺]
From here the concentration of hydronium ion (H₃O⁺) will be:
[H₃O⁺] = 
[H₃O⁺] = 
[H₃O⁺] = 3.162 × 10⁻⁹ moles / liter