The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
<h3>What is energy?</h3>
Energy is the ability to do work.
The primary source of energy on the earth is the sun.
The energy from the sun is used by producers to produce food on which other organisms depend on.
The energy from the sun gets to the humpback whale through producers such as plankton.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
Learn more about energy flow at: brainly.com/question/21786633
Answer: Net force is the summation of all the forces involved or acting on an object.
Explanation: For action and reaction situation it states that the Fa = -Fb. Both forces with equal magnitudes but opposite direction will cancel out each other having a zero net force.
Answer:
22.9 Liters CO(g) needed
Explanation:
2CO(g) + O₂(g) => 2CO₂(g)
? Liters 32.65g
= 32.65g/32g/mol
= 1.02 moles O₂
Rxn ratio for CO to O₂ = 2 mole CO(g) to 1 mole O₂(g)
∴moles CO(g) needed = 2 x 1.02 moles CO(g) = 2.04 moles CO(g)
Conditions of standard equation* is STP (0°C & 1atm) => 1 mole any gas occupies 22.4 Liters.
∴Volume of CO(g) = 1.02mole x 22.4Liters/mole = 22.9 Liters CO(g) needed
___________________
*Standard Equation => molecular rxn balanced to smallest whole number ratio coefficients is assumed to be at STP conditions (0°C & 1atm).
Answer:
the types of chemical reaction are combination, decomposition, single replacement, double replacement, combustion