Answer:
True b and c
Explanation:
In an RLC circuit the impedance is
![Z = \sqrt{[R^{2} + ( (wL)^{2} + (\frac{1}{wC})^{2} ] }](https://tex.z-dn.net/?f=Z%20%3D%20%5Csqrt%7B%5BR%5E%7B2%7D%20%2B%20%28%20%28wL%29%5E%7B2%7D%20%2B%20%28%5Cfrac%7B1%7D%7BwC%7D%29%5E%7B2%7D%20%5D%20%20%20%20%20%7D)
examine the different phrases..
a) False. The maximum impedance is the value of the resistance
b) True. Resonance occurs when
(wL)² + (1 / wC)² = 0
w² = 1 / LC
c) True. In resonance the impedance is the resistive part and the power is maximum
d) False. In resonance the inductive and capacitive part cancel each other out
e) False. The impedance is always greater outside of resonance, but at the resonance point they are equal
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:
Calculate the wavelength associated with an electron with energy 2000 eV.
Sol: E = 2000 eV = 2000 × 1.6 × 10–19 J
Im pretty sure its C- Wavelength