Explanation:
As you move across the periodic table, the number of protons and neutrons increases but the number of orbital levels of the period remains the same. The atomic radii therefore decrease, across the period, because the increase in proton number causes an increased pull of the orbital electrons bringing them closer to the nucleus.
As you move down a group in a periodic table, the number of orbital levels increase. The effective nuclear charge of the nucleus of the atoms decreases due to the increased number of orbital levels that shield the valence electrons from the attractive force nucleus.
Answer:
3.5
Explanation:
500*0.175= 8.75 *40/1000=3500/1000=3.5
Answer:
B. flourine
Flourine is the 9th element in the periodic table
Many electrophilic aromatic halogenations require the presence of an aluminum trihalide as a catalyst. We generally acetylated the amino group as protection. Now, this acetanilide can be brominated at Ortho or para position. An atom that is attached to an aromatic system usually hydrogen is replaced by an electrophile is an organic reaction which is called Electrophilic aromatic substitution. There are what you called important electrophilic aromatic substitutions they are aromatic nitration, aromatic sulfonation, aromatic halogenation and acylation and alkylating Friedel-Crafts reaction. Aromatic bromination is an electrophilic aromatic substitution (EAS) reaction, which will require benzene to act as a nucleophile to acquire an electrophile. Therefore, any directing groups that activate the ring will make it react more quickly with respect to aromatic bromination. Acetanilide is a moderately-activated ring <span>having a decent EWG.</span>