A. Strontium Phosphate
Solubility product constant is an equilibrium constant for the maximum amount of solute that can dissolve to form an aqueous solution. The value of the constant describes a solution which is saturated.
The greater the solubility product constant, the more soluble a solute is in the liquid. Consequently, the smaller the constant, the less soluble the solute is. The following list shows the solubility product constants of the given compounds in aqueous solutions at 298K in decreasing order:
Thallium Bromide - 3.71×10–6
Copper Iodide - 1.27×10<span>–12
</span>Silver Bromide - 5.35×10–13
Silver Arsenate - 1.03×10–22
Mercury Bromide - 6.40×10–23
Strontium Phosphate - 1×10–31
<span>
The salt with the smallest solubility product constant is strontium phosphate, and therefore is the one which is least soluble in water.
</span>
Answer:
Explanation:
Group one:
The elements of group one shows +1 charge because these all are metals and lose their one valance electron.
Hydrogen lithium sodium potassium rubidium cesium francium
Group 2:
The elements of group two shows +2 charge because these all alkali metals and lose their two valance electrons.
beryllium magnesium calcium strontium barium radium
Group 3:
The elements of group three-B shoes +3 charge by losing three valance electrons.
Scandium yttrium lanthanum actinium
Group 4:
The elements of group 4th A and 4th B lose four electrons or gain four electrons to complete the octet and shows +4 or -4 charge.
Group 5:
Group 5th elements gain three electrons and shows -3 charge to complete the 8 electrons. (octet).
It involve the elements of group 5th A.
Group 6:
The elements of group 6A gain two electrons to complete the octet and shows -2 charge.
Group 7:
The elements of group 7A gain one electron to complete the octet and shows -1 charge.
Group 8:
The elements of group 8A are noble gases and have complete octet. That's why shows 0 charge.
When dissolved in water, acids donate hydrogen ions (H+). Hydrogen ions are hydrogen atoms that have lost an electron and now have just a proton, giving them a positive electrical charge. ... If a solution has a high concentration of H+ ions, then it is acidic.
Answer:
53.6 g of N₂H₄
Explanation:
The begining is in the reaction:
N₂(g) + 2H₂(g) → N₂H₄(l)
We determine the moles of each reactant:
59.20 g / 28.01 g/mol = 2.11 moles of nitrogen
6.750 g / 2.016 g/mol = 3.35 moles of H₂
1 mol of N₂ react to 2 moles of H₂
Our 2.11 moles of N₂ may react to (2.11 . 2) /1 = 4.22 moles of H₂, but we only have 3.35 moles. The hydrogen is the limiting reactant.
2 moles of H₂ produce at 100 % yield, 1 mol of hydrazine
Then, 3.35 moles, may produce (3.35 . 1)/2 = 1.67 moles of N₂H₄
Let's convert the moles to mass:
1.67 mol . 32.05 g/mol = 53.6 g
Answer:5.4 g / 13.6 g *100
Explanation:Its is the correct answer