Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h
Yes bc math, numbers and more
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
It conducts electricity. This is because the electrons are able to move around more for it has gained energy, after being heated.