Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.
Cm^3 is same as mL
13.5 g / 5 mL = 2.7 g/mL
look up densities of metals
aluminum has a density of 2.7 g/mL
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A.
Answer:
One scientific law that provides the foundation for understanding in chemistry is the law of conservation of matter. It states that in any given system that is closed to the transfer of matter (in and out), the amount of matter in the system stays constant.
Explanation:
hope it helps ya