The p sublevel holds 6 electrons because it has 3 orbitals.
Answer: The correct option is The properties of a noble gas.
Explanation: There are 7 periods in the periodic table.
The last element of each period are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Ununoctium (Uuo).
- The electronic configuration for Helium is
. For He, The outermost electrons are 2.
- The electronic configuration for all the other elements is
( where, n = 2, 3, 4, 5, 6 and 7 respectively). For all the other gases, the outermost electrons are 8.
All these elements have stable electronic configuration and are not reactive in nature. Hence, they are considered as noble gases.
Therefore, the last element of each period always have the properties of a noble gas.
Answer:

Explanation:
Hello.
In this case, given the formula:

Whereas E is the energy, h the Planck's constant and u the frequency of the photon. Thus, solving for it, we obtain:

Or also:

Best regards.
A lone oxygen atom has 6 electrons in its outer shell which is not very stable, whereas as full octet (8 outer shell electrons) is stable. In order to achieve this two oxygen atoms will share 4 electrons, each contributing 2 electrons. Since these electrons exist within the orbitals of both atoms, to oxygen atoms essentially achieve a full octet.
Can you give me the anwsers