Answer:
a. Rotational speed of the drill = 375.96 rev/min
b. Feed rate = 75 mm/min
c. Approach allowance = 3.815 mm
d. Cutting time = 0.67 minutes
e. Metal removal rate after the drill bit reaches full diameter. = 9525 mm³/min
Explanation:
Here we have
a. N = v/(πD) = 15/(0.0127·π) = 375.96 rev/min
b. Feed rate = fr = Nf = 375.96 × 0.2 = 75 mm/min
c. Approach allowance = tan 118/2 = (12.7/2)/tan 118/2 = 3.815 mm
d. Approach allowance T∞ =L/fr = 50/75 = 0.67 minutes
e. R = 0.25πD²fr = 9525 mm³/min.
Answer:
2) 3)
Explanation:
1) Expressing the Division as the summation of the quotient and the remainder
for
118, knowing it is originally a decimal form:
118:2=59 +(0), 59/2 =29 + 1, 29/2=14+1, 14/2=7+0, 7/2=3+1, 3/2=1+1, 1/2=0+1
2)
Similarly, we'll start the process with the absolute value of -49 since we want the positive value of it. Then let's start the successive divisions till zero.
|-49|=49
49:2=24+1, 24:2=12+0,12:2=6+0,6:2=3+0,3:2=1+1,1:2=0+1
100011
3)
The first step on that is dividing by 16, and then dividing their quotient again by 16, so on and adding their remainders. Simply put:
Answer: The complete part of the question is to find the exit velocity
Explanation:
Given the following parameters
Inlet pressure = 700kpa
outlet pressure = 40kpa
Temperature = 80°C = 353k
mass flow rate = 1 kg/s
The application of the continuity and the bernoulli's equation is employed to solve the problem.
The detailed steps and the appropriate formula is as shown in the attached file.
A soldering iron is plugged in so it gets hot and you have to have the soldering wire and you holding it on the spot that you want to solder