1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
4 years ago
5

According to fire regulations in a town, the pressure drop in a commercial steel, horizontal pipe must not exceed 2.0 psi per 25

0 ft of pipe for flow rates up to 500 gal/min. If the water temperature is never below 50˚F, what diameter pipe is needed?
Engineering
1 answer:
bonufazy [111]4 years ago
7 0

Answer:

6.37 inch

Explanation:

Thinking process:

We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.

To determine the pressure drop in the pipe:

Using the Bernoulli equation for mass conservation:

\frac{P1}{\rho } + \frac{v_{2} }{2g} +z_{1}  = \frac{P2}{\rho } + \frac{v2^{2} }{2g} + z_{2} + f\frac{l}{D} \frac{v^{2} }{2g}

thus

\frac{P1-P2}{\rho }  = f\frac{l}{D} \frac{v^{2} }{2g}

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.

Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F

from the tables

Re= 2.01 × 10⁵

Hence, f = 0.018

Therefore, pressure drop, (P1-P2)/p = 2.70 ft

This occurs at ae presure change of 1.17 psi

Correlating with the chart, we find that the diameter will be D= 0.513

                                                                                                      = <u>6.37 in Ans</u>

You might be interested in
The structure of a house is such that it loses heat at a rate of 4500kJ/h per °C difference between the indoors and outdoors. A
adelina 88 [10]

Answer:

15.24°C

Explanation:

The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as

COP=\frac{Q_{in}}{W}

Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat

You can think of this quantity as similar to heat engine's efficiency

In our case, the COP of our heater is

COP_{heater} = \frac{\frac{4500\ kJ}{3600\ s} *(T_{house}-T_{out})}{4\ kW}

Where T_{house} = 24°C and T_{out} is temperature outside

To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump

Which has COP of:

COP_{carnot}=\frac{T_{house}}{T_{house}-T_{out}}

So we equate the COP of our heater with COP of Carnot heater

\frac{1.25 *(T_{house}-T_{out})}{4}=\frac{T_{house}}{T_{house}-T_{out}}

Rearrange the equation

\frac{1.25}{4}(24-T_{out})^2-24=0

Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be

15.24°C

4 0
3 years ago
What do we need to do to get CO2 emissions all the way to zero?
Svetlanka [38]

Answer:

A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels

Explanation:

here is your answer if you like my answer please follow

3 0
3 years ago
The greater the force applied to an object, the _____ the change in speed or direction of the object.
storchak [24]

Answer:

b

Explanation:

8 0
3 years ago
A 1000 kg turbine has a rotating unbalance of 0.1 kg.m. The turbine operates at a speed between 500 to 750 rpm. What is the maxi
raketka [301]

Answer:

maximum isolator stiffness k =1764 kN-m

Explanation:

mean speed of rotation =\frac{N_1 +N_2}{2}

Nm = \frac{500+750}{2} = 625 rpm

w =\frac{2\pi Nm}{60}

  =65.44 rad/sec

F_T = mw^2 e

F_T = mew^2

       = 0.1*(65.44)^2

F_T =428.36 N

Transmission ratio =\frac{300}{428.36} = 0.7

also

transmission ratio = \frac{1}{[\frac{w}{w_n}]^{2} -1}

0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}

SOLVING FOR Wn

Wn = 42 rad/sec

Wn = \sqrt {\frac{k}{m}

k = m*W^2_n

k = 1000*42^2 = 1764 kN-m

k =1764 kN-m

3 0
3 years ago
The flexural strength or MOR of a ceramic is 310 MPa. A block of the ceramic, which is 20 mm wide, 15 mm high, and 300 mm long,
Alja [10]

Answer:

F=6200\ \text{N}\\

Explanation:

In this problem you need to define the force that acts upon a beam in a 3 point bending problem. I put a picture of the problem taken from Wikipedia:

In this problem the flexural strength is defined with the following formula:

\sigma=\cfrac{3FL}{2bd^2}

where F is the force applied, L the length between the two rods, b the width of the ceramic block and d it's height.

The force is then defined as:

F=\cfrac{2\sigma bd^2}{3L}=6200\ \text{N}

3 0
3 years ago
Other questions:
  • Which of the following answers regarding Mealy and Moore Machines are true?
    7·1 answer
  • What drives up the cost of consumables?
    6·1 answer
  • 15 POINTS! Help.
    9·2 answers
  • An astronomer of 65 kg of mass hikes from the beach to the observatory atop the mountain in Mauna Kea, Hawaii (altitude of 4205
    15·1 answer
  • Engineers are problem blank<br> who use critical thinking to create new solutions.
    11·2 answers
  • Who is the strongest avenger i say hulk but who knows at this point
    7·2 answers
  • Many vehicles have indicator lights telling you when your
    13·1 answer
  • How many different powerball combinations are there
    7·1 answer
  • Select four items that an industrial engineer must obtain in order to practice in the field.
    6·2 answers
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!