Answer:
3,526 meters (m) into kilometers (km) = 0.003526 kilometers
Explanation:
Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
Answer:
1.63ₓ10⁻⁶ g of U
139.03 g of H
0.385 g of O
141.8 g of Pb
Explanation:
In first place, we need to convert the number of atoms to moles, as we know that 1 mol of anything occupies 6.02×10²³ particles
Therefore:
4.12×10¹⁵ atoms of U . 1 mol / 6.02×10²³ atoms = 6.84×10⁻⁹ moles of U
8.37×10²⁵ atoms of H . 1 mol /6.02×10²³ atoms = 139.03 moles of H
1.45×10²² atoms of O . 1 mol /6.02×10²³ atoms = 0.0241 moles of O
4.12×10²³ atoms of Pb . 1 mol /6.02×10²³ atoms = 0.684 moles of Pb
Moles . Molar mass = Mass (g)
6.84×10⁻⁹ moles of U . 238.03 g/mol = 1.63ₓ10⁻⁶ g of U
139.03 moles of H . 1 g/mol = 139.03 g of H
0.0241 moles of O . 16 g/mol = 0.385 g of O
0.684 moles of Pb . 207.2 g/mol = 141.8 g of Pb
Answer:
Q = 8.8 kJ
Explanation:
Step 1: Data given
The specific heat of a solution = 4.18 J/g°C
Volume = 296 mL
Density = 1.03 g/mL
The temperature increases with 6.9 °C
Step 2: Calculate the mass of the solution
mass = density * volume
mass = 1.03 g/mL * 296 mL
mass = 304.88 grams
Step 3: Calculate the heat
Q = m*c*ΔT
⇒ with Q = the heat in Joules = TO BE DETERMINED
⇒ with m = the mass of the solution = 304.88 grams
⇒ with c = the specific heat of the solution = 4.18 J/g°C
⇒ with ΔT = the change in temperature = 6.9 °C
Q = 304.88 g * 4.18 J/g°c * 6.9 °C
Q = 8793.3 J = 8.8 kJ
Q = 8.8 kJ